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Summary

Small fibres constitute 70–90% of peripheral nerve fibres and regulate several
key functions such as tissue blood flow, temperature and pain perception as
well as sweating, all of which are highly relevant to the clinical presentation
and adverse outcomes associated with foot ulcerations in patients with
diabetes. Recent studies demonstrated significant abnormalities in the small
fibres in subjects with impaired glucose tolerance and diabetes, despite
normal electrophysiology, suggesting that the earliest nerve fibre damage is
to the small fibres. Unfortunately, guidelines and consensus statements focus
on large fibres and continue to advocate electrophysiology as a diagnostic
modality and as a primary end point for the assessment of therapeutic benefit.
(In part, this reflects the difficulties in quantifying small fibre dysfunction
and damage.) We have therefore critically assessed currently available
techniques that measure small fibre dysfunction in diabetic neuropathy,
using quantitative sensory and sudomotor testing. We have assessed the
role of identifying structural damage by quantifying intraepidermal nerve
fibre density in skin biopsies and corneal nerve morphology using corneal
confocal microscopy. Finally, we propose a definition for diabetic neuropathy
that incorporates small fibre damage. Copyright  2011 John Wiley & Sons,
Ltd.
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Abbreviations: DSPN – diabetic sensori-motor polyneuropathy; IENF –
intraepidermal nerve fibres; QSART – Quantitative Sudomotor Axon Reflex
Testing; SFN – small fibre neuropathy; SSR – Sympathetic skin response.

Introduction and objectives

Recently it has been proposed that ‘If nerve conduction is normal, a validated
measure (with class 1 evidence) of small fibre neuropathy (SFN) may be
used’ to define and quantify the severity of diabetic sensori-motor polyneu-
ropathy (DSPN) [1]. Nerve conduction assesses large myelinated nerve fibre
function and has been used as an end point in clinical trials of human
diabetic neuropathy, based on relative ease of quantification, reproducibility
and reasonable sensitivity and specificity [2]. However, recent data have
demonstrated minimal worsening [3] and improvements [4] in electrophys-
iology in placebo and epidemiological cohorts with little relation to other
measures of small fibre and autonomic function in diabetic patients [5].

Small fibres constitute 79.6% [6] to 91.4% [7] of peripheral nerve fibres.
Damage to this class of fibres underlies the symptoms of painful diabetic
neuropathy which are typically distal, symmetrical and associated with
nocturnal exacerbation. The descriptors used by patients to portray the
symptoms can be variable but often include: prickling, aching, burning
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pain with intermittent sharp stabbing electric shock-like
pains and on examination one can elicit dysaesthesiae and
allodynia. In addition to these troublesome symptoms,
dysfunction and damage to this class of fibres are also
key to the genesis of foot ulceration through the effect on
sudomotor function [8], pressure-induced vasodilatation
[9,10] and of course heat and pain perception [11].
Moreover, an increasing body of data shows that small
fibre damage may precede large fibre damage in diabetic
neuropathy [12–14].

Therefore it appears pertinent to address whether any
definition of DSPN should include a measure of SFN.
Issues that arise before we can adopt the assessment of
SFN to diagnose DSPN include establishing not only the
reproducibility, sensitivity, specificity and accuracy but
also the practical viability of any proposed test. For the
purposes of this review we will consider the available
evidence for established and emerging measures of ‘small
fibre damage’ to diagnose and stratify the severity of
DSPN.

Nerve biopsy

Nerve biopsy has traditionally been used to quantify
myelinated nerve fibre density which correlates with
abnormalities in neurophysiology [15,16] and may also
predict development of future neurophysiological deficits
[17]. Unmyelinated nerve fibre damage precedes myeli-
nated nerve fibre damage in sural nerve biopsies and
therefore may be used to detect early DSPN [7]. However,
nerve biopsy is an invasive and highly specialized proce-
dure which requires electron-microscopy with consider-
able expertise for quantification, and therefore cannot be
advocated for routine use to diagnose early DSPN [18].

Skin biopsy

Skin biopsy, a minimally invasive procedure, allows mor-
phometric quantification of intraepidermal nerve fibres
(IENF) most commonly expressed as the number of IENF
per length of section (IENF/mm) [19,20] (Figure 1).
Intra- and inter-observer variability for the assessment
of IENF density demonstrates good agreement [20,21],
declines with age and does not appear to be influenced
by weight or by height [22]. An international consortium
of investigators has recently compiled a normative data
base for intra-epidermal nerve fibre density (IENFD) in
550 participants and has shown an effect of age, but no
influence of height, weight or body mass index [23]. The
blister technique is an alternative less invasive procedure
which assesses innervation of the epidermis alone and
shows good agreement with punch biopsy [24].

Diagnostic yield of IENF quantification

No study assessing the sensitivity and specificity of IENF
in DSPN is available. However, several studies in SFN

Figure 1. Skin biopsy with PGP 9.5 immunostaining for
intraepidermal nerve fibres showing normal intraepidermal
nerve fibres (→) in a control subject (top) and absence of
intraepidermal nerve fibres with only dermal nerve fibres (→)
in a diabetic patient with severe neuropathy (bottom)

have included patients with DSPN. In 58 patients with
pure SFN, a cut-off IENF density of ≤8.8/ mm at the
ankle was associated with a sensitivity of 77.2% and a
specificity of 79.6% [25]. Similarly, in 67 patients with
pure SFN a sensitivity of 88% and a specificity of 88.8%
have been reported [26]. In a study of 210 patients with
SFN, which included 65 diabetic patients, the Z-scores
and fifth percentile provided the highest specificity (98
and 95%, respectively) but a very low sensitivity (31
and 35%, respectively) compared with the receiver oper-
ating characteristic analysis (specificity 64%, sensitivity
78%) [27]. These findings suggest that the diagnostic
yield of skin biopsy may depend on the reference and
cut-off values selected and the definition of SFN adopted.
IENF density correlates inversely with thermal thresholds.
Whilst some have reported a closer correlation with warm
and heat-pain thresholds [25,28–30] compared to cooling
thresholds [31,32] others have reported the opposite, with
a closer correlation with cold rather than heat detection
thresholds [33,34]. A recent study has demonstrated no
correlation between IENFD and the neuropathy symptom
score, but interestingly an inverse correlation was demon-
strated with the severity of pain assessed using the VAS-
max [35]. The correlation between Quantitative Sensory
Testing and IENF density therefore remains controversial.

The American Academy of Neurology, American Associ-
ation of Neuromuscular and Electrodiagnostic Medicine,
and American Academy of Physical Medicine and Reha-
bilitation have concluded however that skin biopsy may
be considered for the diagnosis of DSPN, particularly
SFN, with a level C recommendation [36]. More recently,
under the auspices of the European Federation of the
Neurological Societies and the Peripheral Nerve Society,
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revised guidelines on the use of skin biopsy concluded
that IENF density is a reliable and efficient technique
to confirm the clinical diagnosis of SFN with level A
recommendation [37].

Additional morphological features of IENFs include
the branch density, length and mean dendritic length;
all show an early reduction which progresses with
neuropathic severity [13,38]. Several studies with serial
skin biopsies in patients with SFN have shown that axonal
swellings predict a decline in IENF density [39–41].
However, they occur not only in patients with SFN [42]
but also in healthy individuals [43] and isolated swellings
with normal IENF densities have been observed in a
variety of other neuropathies [43–46].

Diabetic neuropathy

In patients with diabetic neuropathy, the prevalence of
abnormal nerve conduction, Quantitative Sensory Testing
and IENF was comparable [35]. However, IENF density
was significantly reduced in patients with normal nerve
conduction, suggesting early damage to small nerve fibres
[12,14]. A recent study has shown comparable abnor-
malities in electrophysiology thermal thresholds and loss
of IENF in diabetic patients with mild neuropathy [35].
There is an inverse correlation between IENF density and
the severity of DSPN, defined by the Neurological Dis-
ability Score [13,29,47] and the Neuropathy Impairment
Score [14]. Additionally, IENF density appears to be lower
in diabetic patients with painful neuropathy compared
with painless neuropathy [13,29,48]. A 1-year diet and
exercise intervention program in patients with SFN and
impaired glucose tolerance led to increased IENF density
[49]. However, no change was observed in 18 diabetic
patients after pancreas/kidney transplantation [50]. This
may reflect the marked IENF loss at baseline [51], par-
ticularly in diabetic patients undergoing pancreas/kidney
transplantation and the slower regeneration rate of IENF
[52]. These data suggest that IENF loss is an early fea-
ture of diabetes, progresses with increasing neuropathic
severity and may improve with appropriate intervention.

Sudomotor innervation

Recently, a novel stereologic technique has been applied
in skin biopsies and showed a correlation between
sweat gland nerve fibre density, neuropathic symptoms,
neurological deficits and sweat production [53]. However,
morphometric data in patients with diabetic SFN are
limited and further studies are warranted.

Quantitative Sensory Testing

Thermal thresholds

Abnormalities in heat-pain thresholds reflect small fibre
dysfunction and a number of instruments including CASE

IV, thermoaesthesiometer and Medoc have been used to
quantify this parameter. In 498 type 2 diabetic patients
and 434 control subjects an elevated warm threshold was
the most frequent abnormality (60.2%) compared with
an abnormal cold threshold (39.6%) and abnormal sural
nerve conduction velocity (12.9%), and it was related to
both symptoms and glycaemic control [54]. However, a
careful study of 59 diabetic patients showed that unlike
cold perception thresholds and IENFD, warm perception
thresholds did not differentiate diabetic patients with
and without symptoms [14]. Similarly, in a study of
191 diabetic patients there was no difference in heat-
pain thresholds between those with and without painful
neuropathy [33].

Pain-related evoked potentials

In a study of 57 diabetic patients with entirely normal elec-
trophysiology, the latency was increased and amplitude
was reduced for pain-related evoked potentials, elicited
by nociceptive electrical stimulation of the skin [55].

Nerve axon reflex/flare response

Stimulation of the nociceptive C fibre results in both
orthodromic conduction to the spinal cord and antidromic
conduction to other axon branches, i.e. the axon reflex
(Figure 2) which can stimulate the release of peptides,
such as substance P and calcitonin gene-related peptide,
resulting in vasodilation and increased permeability. Stud-
ies have shown that this neurovascular response mediated
by the nerve axon reflex is reduced in diabetic neuropathic
patients, correlates with other nerve function measure-
ments and has reasonable sensitivity and specificity in
identifying patients with diabetic neuropathy [56,57].
The LDIflare test evaluates 44 ◦C heat-induced vasodila-
tion [58] and is reduced in subjects with impaired glucose
tolerance [59], and in type 2 diabetic patients with and

Figure 2. Nerve axon reflex: Stimulation of the C nociceptive
nerve fibres leads to antidromic stimulation of the adjacent C
fibres, which secrete various vasomodulators such as substance
P, calcitonin gene-related peptide and histamine that cause
vasodilatation and increased blood flow
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Figure 3. Corneal confocal microscopy image of a control subject (right panel) with normal corneal nerve (→) density compared
to an image from a diabetic patient with severe neuropathy and marked loss of corneal nerve fibres (left panel)

without neuropathy [60,61] but interestingly is normal in
patients with type 1 diabetes of long duration [59].

More longitudinal data and perhaps assessment after
interventions when compared with established tests are
necessary before these techniques can be recommended
for clinical use.

Sudomotor dysfunction

Sympathetic skin response

Sympathetic skin response (SSR) assesses sudomotor and
hence small fibre dysfunction. In an early study it failed
to differentiate the presence or absence of neuropathy in
a series of 337 diabetic patients [62]. However, it has
recently been shown to predict the risk of foot ulcera-
tion comparable with abnormalities in neuropathy deficit
score (NDS) and elevated vibration perception [63]. It
has also been shown to have a sensitivity of 87.5% and
a specificity of 88.2% for detecting diabetic autonomic
neuropathy [64].

Quantitative Sudomotor Axon Reflex
Testing

Quantitative Sudomotor Axon Reflex Testing (QSART)
evaluates sudomotor function by assessing the local sweat
response to iontophoresis of acetylcholine [65] and has
been shown to be highly sensitive in the detection of
distal SFN [66]. QSART evaluates postganglionic axon
function as opposed to the polysynaptic pathways assessed
using SSR. In a series of 31 diabetic patients with early
neuropathy it appeared to be better at detecting early
neuropathy than SSR [67].

Neuropad

The neuropad test is a simple visual indicator test
which uses a colour change to define the integrity
of skin sympathetic cholinergic innervation. Neuropad
responses have been shown to correlate with modified
NDS, Quantitative Sensory Testing, cardiac autonomic

neuropathy and IENF loss with relatively high sensitivity
but lower specificity for detecting DSPN [68,69]. A recent
study has shown that an abnormal result of Neuropad test
in those with a normal NDS may predict the development
of diabetic neuropathy after 5 years [70]. This appears
to reflect early small fibre involvement which is missed
using NDS as a measure of neuropathy.

Corneal confocal microscopy

Corneal confocal microscopy is a non-invasive ophthalmic
technique that has been shown to detect small sensory
corneal nerve fibre loss in diabetic neuropathy (Figure 3)
[71], idiopathic SFN [72] and Fabry disease [73]. Corneal
nerve fibre damage correlates with IENF loss and severity
of neuropathy in diabetic patients [13,74] and is more
marked in patients with painful diabetic neuropathy [13].
Corneal nerve fibre density also improves 6 months after
combined pancreas/kidney transplantation [75]. It has
been shown to have high reproducibility [76], sensitivity
and specificity [77]. To enhance the practical application
of this technique an automated image analysis system has
also been developed recently [78].

Definition of SFN

In diabetic patients, we propose to grade SFN as follows:
(1) Possible: presence of distal symmetrical symptoms
and/or clinical signs of small fibre damage; (2) Probable:
presence of distal symmetrical symptoms, clinical signs
of small fibre damage, and normal or abnormal sural
nerve conduction study; (3) Definite: presence of length-
dependent symptoms, clinical signs of small fibre damage,
normal or abnormal sural nerve conduction study
and/or abnormal Quantitative Sensory Testing thermal
thresholds at the foot and reduced IENF density at the
ankle.

At present it is not possible to suggest criteria to
define the severity of SFN in diabetic polyneuropathy.
However, as normative ranges are established for the
different tests of small fibre dysfunction and damage,
it may be possible to devise a measure of severity
using different percentiles or quartiles as cut-offs.

Copyright  2011 John Wiley & Sons, Ltd. Diabetes Metab Res Rev 2011; 27: 678–684.
DOI: 10.1002/dmrr



682 R. A. Malik et al.

Conflict of interest

None declared.

Appendix

The Toronto Consensus Panel on Diabetic Neuropathy
James W Albers, MD, PhD, University of Michigan, Ann
Arbor, MI, USA
Gérard Amarenco, MD, Service de Rééducation Neu-
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